Phospholipase C-gamma inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants.

نویسندگان

  • A Banan
  • J Z Fields
  • Y Zhang
  • A Keshavarzian
چکیده

Loss of intestinal barrier integrity is associated with oxidative inflammatory GI disorders including inflammatory bowel disease. Using monolayers of human intestinal epithelial (Caco-2) cells, we recently reported that epidermal growth factor (EGF) protects barrier integrity against oxidants by stabilizing the microtubule cytoskeleton, but the mechanism downstream of the EGF receptor (EGFR) is not established. We hypothesized that phospholipase C (PLC)-gamma is required. Caco-2 monolayers were exposed to oxidant (H2O2) with or without pretreatment with EGF or specific inhibitors of EGFR tyrosine kinase (AG-1478, tyrphostin 25) or of PLC (L-108, U-73122). Other Caco-2 cells were stably transfected with a dominant negative fragment for PLC-gamma (PLCz) to inhibit PLC-gamma activation. Doses of EGF that enhanced PLC activity also protected monolayers against oxidant-induced tubulin disassembly, disruption of the microtubule cytoskeleton, and barrier leakiness as assessed by radioimmunoassay, quantitative Western blots, high-resolution laser confocal microscopy, and fluorometry, respectively. Pretreatment with either type of inhibitor abolished EGF protection. Transfected cells also lost EGF protection and showed reduced PLC-gamma phosphorylation and activity. We conclude that EGF protection requires PLC-gamma signaling and that PLC-gamma may be a useful therapeutic target.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipase C-g inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants

Banan, A., J. Z. Fields, Y. Zhang, and A. Keshavarzian. Phospholipase C-g inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 281: G412–G423, 2001.— Loss of intestinal barrier integrity is associated with oxidative inflammatory GI disorders including inflammatory bowel disease. Using monolayers of human intestinal e...

متن کامل

PKC-beta1 mediates EGF protection of microtubules and barrier of intestinal monolayers against oxidants.

Using monolayers of human intestinal (Caco-2) cells, we found that oxidants and ethanol damage the cytoskeleton and disrupt barrier integrity; epidermal growth factor (EGF) prevents damage by enhancement of protein kinase C (PKC) activity and translocation of the PKC-beta1 isoform. To see if PKC-beta1 mediates EGF protection, cells were transfected to stably over- or underexpress PKC-beta1. Tra...

متن کامل

Key role of PKC and Ca in EGF protection of microtubules and intestinal barrier against oxidants

Banan, A., J. Z. Fields, Y. Zhang, and A. Keshavarzian. Key role of PKC and Ca21 in EGF protection of microtubules and intestinal barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 280: G828–G843, 2001.—Using monolayers of human intestinal (Caco-2) cells, we showed that growth factors (GFs) protect microtubules and barrier integrity against oxidative injury. Studies in nongastroi...

متن کامل

PKC-zeta is required in EGF protection of microtubules and intestinal barrier integrity against oxidant injury.

Using monolayers of human intestinal (Caco-2) cells, we showed that epidermal growth factor (EGF) protects intestinal barrier integrity against oxidant injury by protecting the microtubules and that protein kinase C (PKC) is required. Because atypical PKC-zeta isoform is abundant in wild-type (WT) Caco-2 cells, we hypothesized that PKC-zeta mediates, at least in part, EGF protection. Intestinal...

متن کامل

Key role of PKC and Ca2+ in EGF protection of microtubules and intestinal barrier against oxidants.

Using monolayers of human intestinal (Caco-2) cells, we showed that growth factors (GFs) protect microtubules and barrier integrity against oxidative injury. Studies in nongastrointestinal cell models suggest that protein kinase C (PKC) signaling is key in GF-induced effects and that cytosolic calcium concentration ([Ca2+](i)) is essential in cell integrity. We hypothesized that GF protection i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2001